Note

Direct Estimate for Bernstein Polynomials

Z. Ditzian

Department of Mathematics, Unitersity of Alberta. Edmonton, Alberta, Canada T6G 2GI

Communicated by Vilmos Totik

Received June 2, 1993; accepted August 17, 1993

For the Bernstein polynomials

$$
\begin{equation*}
B_{n}(f, x)=\sum_{k=0}^{n}\binom{n}{k} x^{k}(1-x)^{n-k} f\left(\frac{k}{n}\right), \tag{1}
\end{equation*}
$$

the pointwise approximation

$$
\begin{align*}
\left|B_{n}(f, x)-f(x)\right| \leq C & \omega_{\varphi^{\lambda}}^{2}\left(f, n^{-1 / 2} \varphi(x)^{1-\lambda}\right) \\
& 0 \leq \lambda \leq 1, \quad \varphi(x)^{2}=x(1-x) \tag{2}
\end{align*}
$$

will be proved. This estimate yields a treatment that unifies the classical estimate for $\lambda=0$ (see [ST]) and the norm estimate for $\lambda=1$ (see [DT, p. 117]). Moreover, (2) yields an analogue to the pointwise algebraic polynomial approximation in $C[-1,1]$ which was proved recently (see [DJ].

We recall that

$$
\begin{align*}
\omega_{\varphi^{\lambda}}^{2}(f, t)= & \sup _{0<h \leq t} \sup _{x \pm h \varphi^{\lambda}(x) \in[0,1]} \mid f\left(x-h \varphi^{\lambda}(x)-2 f(x)\right. \\
& +f\left(x+h \varphi^{\lambda}(x)\right) \mid \tag{3}
\end{align*}
$$

is equivalent to the K-functional

$$
\begin{equation*}
K_{\varphi^{\lambda}}\left(f, t^{2}\right)=\inf \left(\|f-g\|_{C[0,1]}+t^{2}\left\|\varphi^{2 \lambda} g^{\prime \prime}\right\|_{C[0,1]}\right) \tag{4}
\end{equation*}
$$

(where the infimum is taken on functions satisfying $g, g^{\prime} \in A, C_{\text {loc }}$). That is

$$
\begin{equation*}
C^{-1} K_{\varphi^{\wedge}}\left(f, t^{2}\right) \leq \omega_{\varphi^{\wedge}}^{2}(f, t) \leq C K_{\varphi^{\wedge}}\left(f, t^{2}\right) \tag{5}
\end{equation*}
$$

(see [DT], Chap. 2]).

Proof of the Estimate (2). Using (4) and (5), we may choose $g_{n} \equiv g_{n, x, \lambda}$ for a fixed x and λ such that

$$
\begin{equation*}
\left\|f-g_{n}\right\|_{C[0,1]} \leq A \omega_{\varphi^{\wedge}}^{2}\left(f, n^{-1 / 2} \varphi(x)^{1-\lambda}\right) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
n^{-1} \varphi(x)^{2-2 \lambda}\left\|\varphi^{2 \lambda} g_{n}^{\prime \prime}\right\| \leq B \omega_{\varphi^{\lambda}}^{2}\left(f, n^{-1 / 2} \varphi(x)^{1-\lambda}\right) \tag{7}
\end{equation*}
$$

Hence we have

$$
\begin{aligned}
& \left|B_{n}(f, x)-f(x)\right| \\
& \quad \leq\left|B_{n}\left(f-g_{n}, x\right)-\left(f(x)-g_{n}(x)\right)\right|+\left|B_{n}\left(g_{n}, x\right)-g_{n}(x)\right| \\
& \quad \leq 2 A \omega_{\varphi^{\lambda}}^{2}\left(f, n^{-1 / 2} \varphi(x)^{1-\lambda}\right)+\left|B_{n}\left(g_{n}, x\right)-g_{n}(x)\right|
\end{aligned}
$$

We now write, following [DT, p. 141],

$$
\begin{aligned}
& \left|B_{n}\left(g_{n}, x\right)-g_{n}(x)\right| \\
& \quad \leq \sum_{k=0}^{n}\binom{n}{k} x^{k}(1-x)^{n-k}\left|\int_{k, n}^{x}(x v) g_{n}^{\prime \prime}(v) d v\right| \\
& \quad \leq \sum_{k=0}^{n}\binom{n}{k} x^{k}(1-x)^{n-k} \frac{|x-k / n|}{\varphi(x)^{2 \lambda}}\left|\int_{k / n}^{x} \varphi(v)^{2 \lambda}\right| g_{n}^{\prime \prime}(v)|d v| \\
& \quad \leq\left\|\varphi^{2 \lambda} g_{n}^{\prime \prime}\right\| \sum_{k=0}^{n}\binom{n}{k} x^{k}(1-x)^{n-k} \frac{(x-k / n)^{2}}{\varphi(x)^{2 \lambda}} \\
& \quad \leq\left\|\varphi^{2 \lambda} g_{n}^{\prime \prime}\right\| n^{-1} \varphi(x)^{2-2 \lambda}
\end{aligned}
$$

which completes the proof of (2).
Remark. Similar estimates for other linear operators follow the same proof.

References

[DJ] Z. Ditzian and D. Jiang, Approximation by polynomials in $C[-1,1]$, Canad. J. Math. 44 (1992), 924-940.
[DT] Z. Ditzian and V. Totik, "Moduli of Smoothness," Springer-Verlag, New York, 1987.
[ST] L. I. Strukov and A. F. Timan, Mathematical expectation of continuous functions of random variables, smoothness and variance, Siberian Math. J. 18 (1977), 469-474.

